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Abstract

The industrial sector has been the largest CO2 emitter in China. The purpose of this paper is to 
explore the reasons for the slowdown in the growth of industrial CO2 emissions (ICE) since China’s 
economy entered a new development model in 2012 – the “new normal”. First, we overviewed the 
ICE status in China from 2007 to 2017. Then, we utilized the Tapio model to analyze the decoupling 
relationship between ICE and industrial economy. Finally, the Logarithmic Mean Divisia Index (LMDI) 
was used to explore the related driving factors of ICE change and the contributions of each province 
to China's ICE increase. The results showed that: (1) the growth rates of China's ICE were 41.34% and 
6.7% in 2007-2012 and 2012-2017, respectively, a signal that the growth of ICE has significantly slowed 
down in the “new normal”. The spatial distribution in ICE has gradually evolved from high emissions in 
northern coastal regions and low emissions in other regions to high emissions in northern regions and 
low emissions in southern regions. In addition, the gap of ICE has gradually widened among provinces. 
(2) The decoupling elasticity between China's ICE and industrial economy decreased from 0.53 in 
2007-2012 to 0.29 in 2012-2017. That may be related to a strong decoupling state in the central and 
southwestern provinces and the decline of the elasticity in the coastal provinces. (3) From 2007 to 2012, 
energy intensity was the main inhibiting factor in China’s ICE. From 2012 to 2017, industrial structure 
was the primary contributor to ICE reduction, followed by energy intensity. The central and eastern 
provinces with large-scale industrial economies, such as Hebei, Sichuan, Hubei, and Shandong, have 
significantly reduced the increment of ICE, making the main contribution to the decline in the growth 
rate of China’s ICE.
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Introduction

Global warming has been well recognized as one 
of the serious challenges facing humankind in the 21st 
century. The main cause is that human activities have 
consumed a large amount of fossil fuels in the past 
century and a great quantity of greenhouse gases such 
as CO2 have been emitted [1-2]. At present, China 
has become the largest CO2 emitter in the world. The 
emissions have surpassed the sum of those in the US 
and EU, putting China under enormous pressure to 
reduce emissions and address global warming in 
the international community [3]. In December 2015, 
the 21st United Nations Climate Change Conference 
was officially held in Paris, France, where the Paris 
Agreement was adopted. That limited the global 
average temperature increase compared with the pre-
industrial level to less within 2ºC [4]. Accordingly, the 
Chinese government promised to reduce CO2 emissions 
per unit gross domestic product (GDP) by 60-65% from 
2005 levels by 2030; it requires substantial reduction in 
CO2 emissions for China [5].

Since the reform and opening up in 1978, 
urbanization and industrialization in China have 
developed rapidly. The industry holds a key position not 
only in China’s economy but also in China’s total energy 
consumption. The industrial value added accounts for 
more than 30% of GDP in China [6]. Approximately 
70% of China’s total energy is used by various industrial 
activities [7], proving that the industrial sector can play 
a major role in reducing CO2 emissions. Moreover, the 
industrial sector in China is the largest CO2 emitter, and 
its CO2 emissions have continued to increase in recent 
years [8]. However, since China's economy entered the 
"new normal" in 2012, the economic structure has been 
constantly adjusted, and the level of economic growth 
has shifted from high speed to medium-high speed. 
According to the calculation, the growth rate of China's 
ICE experiences a significant slowing trend since 2012. 
Thus, it is of a certain reference significance to explore 

its reasons for the formulation of China's ICE reduction 
policies in the future. Further, there is a large gap in 
the industrial structure and development level among 
30 provinces, which leads to various characteristics 
in ICE in different provinces. Meantime, different 
provinces account for different share of China's overall 
ICE (Fig. 1), and the influencing factors in their ICE 
change exhibit some differences. Therefore, it is very 
urgent to reveal ICE status in different periods at the 
national and provincial scales, and to carry out the 
research on the influencing mechanism of ICE change 
and the contributions of each province to the national 
ICE change. The studies can reveal the reasons for 
the slowdown of China's ICE growth in the "new 
normal", so as to provide theoretical reference for the 
policy adjustment of energy conservation and emission 
reduction in China's industrial sector.

Literature Review

The decoupling theory has been widely used in 
studying the relationship between economic growth and 
environment [9-11]. Meanwhile, the theory, proposed 
by the OECD, is used as a basic theory to describe the 
relationship between economic growth and resource 
consumption or environmental pollution, and it is 
divided into absolute decoupling and relative decoupling 
[12]. Zhang et al. [13] introduced the decoupling index 
into energy and environment field in 2000. Freitas and 
Kaneko [14] used this method to explore the decoupling 
situation between economic activity and CO2 emissions 
from energy consumption in 2004-2009 in Brazil, 
and found absolute decoupling in 2009. Moreover, 
Tapio et al. [15] presented a theoretical framework for 
decoupling in 2005, defining the difference between 
decoupling, coupling and negative decoupling, and 
then divided them into weak, strong, and expansive or 
recessive degrees of decoupling. The Tapio decoupling 
model has been adopted by many scholars [16-18]. 

Fig. 1. The share that ICE of each province accounted for the national ICE.
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For instance, Wang et al. [19] utilized the method to 
quantify the decoupling elasticity between China's 
economy and CO2 emissions. The decoupling results 
indicated that the elasticity had a downward trend 
during the whole period, with two types of states: 
expansive negative decoupling (2002-2005) and weak 
decoupling (2000-2002 and 2005-2014). Based on 
the Logarithmic Mean Divisia Index (LMDI) theory, 
Zhang et al. [20] decomposed the decoupling indicator 
between the economic growth and energy consumption 
in China, and found the deep reason leading to the 
decoupling state. Zhou et al. [1] quantitatively analyzed 
the decoupling relationship between carbon emissions 
and economic growth in eight major regions of China 
between 1996 and 2012 by applying the Tapio extended 
model. The result revealed that a weak decoupling 
relationship between industrial energy carbon emission 
and economic growth was found in most regions. 
In order to explore a more accurate decoupling 
relationship, the Tapio decoupling model was applied in 
this study. 

However, the decoupling analysis between ICE 
and industrial economy is not enough to find out the 
reasons for the slowdown of China’s ICE growth in 
the “new normal”. Thus, we often combined it with 
the decomposition analysis to investigate the causes of 
change in CO2 emissions.

The decomposition analysis usually included three 
major decomposition methods: production theory 
decomposition analysis method (PDA) [21], structure 
decomposition analysis method (SDA) [22], and index 
decomposition analysis method (IDA) [23]. The PDA 
method combined the distance function and the 
Malmquist index to decompose the target variables 
and used the DEA model to calculate the distance 
function to determine the effect of all influence factors 
on the target variables [1]. Compared with the PDA 
method, the other two methods are more widely used. 
The SDA approach is based on the input-output model 
in quantitative economics to decompose the changes 
in energy or CO2 emissions by using the input-output 
tables in specific years [24-25]. For example, Chang et 
al. [22] employed SDA method to examine emission 
trends and influencing factors in ICE changes in 
Taiwan during 1981-1991. The results showed that the 
level of domestic final demand and exports was the 
primary factor in the increase of CO2 emissions, and 
the effect of decreasing industrial CO2 intensity was 
a main reducing factor. SDA has been widely used in 
the environment field by many scholars [26]. Moreover, 
SDA can only analyze years with input-output tables, 
while IDA can analyze all years and have a lower 
requirement for data. Therefore, IDA is more widely 
used. IDA usually has two common methods [27]: 
the Laspeyres index and the Divisia index, where the 
Laspeyres index uses percentage change whereas the 
Divisia index uses logarithmic change. Meanwhile, the 
Divisia index approach is more practical and preferred 
in general use. It mainly includes two methods: the 

arithmetic mean Divisia index (AMDI) [28] and LMDI 
[29]. However, AMDI not only contains the residual 
problem, but it cannot solve the problem of “zero value” 
data. The LMDI method can solve the problem of “zero 
value” by replacing a small positive value, and there 
is no unexplained residual term [30]. Therefore, the 
method is applied in a large number of studies [31-32]. 
For example, Zhang et al. [33] explored the influencing 
factors of CO2 emissions from electricity generation in 
China during 1991-2009 based the LMDI method. The 
results indicated that the economic activity effect was 
the main driving factor, but the electricity generation 
efficiency effect was the leading inhibiting factor. Due 
to the theoretical foundation, adaptability, ease of use, 
and result interpretation of the LMDI method [34], this 
paper also adopted it to analyze the main influencing 
factors of ICE change in China and its 30 provinces.

At present, much literature has discussed the 
influencing factors of China's ICE changes [35-37]. 
The studies can be divided into three research scales: 
nation [38-39], province [40] and city [41-42]. At the 
national scale, the analysis of the influencing factors 
in ICE change was mainly concentrated in the entire 
industrial sector [43], industrial sub-sectors [44], and 
multiple sectors [45]. For example, Ouyang et al. [46] 
discussed the driving factors of China’s ICE changes 
from 1991 to 2010 by using the LMDI method. Their 
study suggested that industrial activities made the 
main contribution to China’s ICE growth, and energy 
intensity made the leading contribution to China’s ICE 
decrease. Yang et al. [47] investigated the influencing 
factors of CO2 emissions in China's thermal power 
industry. The decomposition results demonstrated 
that power intensity and economic activities were the 
main factors in promoting CO2 emissions; inversely, 
energy efficiency was the chief factor in inhibiting 
CO2 emissions. Dong et al. [48] combined the PDA and 
LMDI methods to analyze 10 influencing factors in 
China’s 23 industrial sectors. Their results showed that 
GDP was the key factor in promoting CO2 emissions, 
and energy intensity and technological advantages 
exerted a significant inhibiting effect on CO2 emissions. 
At the province and city scales, the analysis of 
the influencing factors in ICE change was mainly 
concentrated in multiple sectors. For example, Liu et al. 
[49] used the LMDI decomposition method to explore 
the main driving factors of CO2 emissions based on the 
calculation in CO2 emissions of 36 industrial sectors 
in Henan Province. The results demonstrated that the 
economic scale played a decisive role in CO2 emissions’ 
growth. Structure and energy intensity produced the 
major inhibiting effects on CO2 emissions. Jia et al. [50] 
conducted a decomposition analysis in CO2 emissions of 
industrial sector and its 32 subsectors in Nanchang. The 
results revealed that economic output made a leading 
contribution to ICE growth, and energy intensity made 
the main contribution to ICE reduction. Further, some 
scholars also analyzed China's ICE by combining 
the decoupling model with the LMDI decomposition 
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Wang et al. [6] utilized an extended LMDI approach 
to decompose the changes of China's ICE from three 
scales: national, regional and provincial, and figured 
out that different factors exerted different effects 
in different periods and regions. However, there is 
no specific discussion on the contributions of each 
province to the national ICE change, which may lead 
to unfair allocation in the share of emission reduction 
among provinces. Further, there is little research on 
the relation between ICE and industrial economy at the 
provincial scale, perhaps leading to a lack of analysis 
of the development status between ICE and industrial 
economy in different provinces when exploring the 
causes of ICE change. This paper tries to fill these gaps. 
Besides, there is no clear purpose in the division of 
study stages in most researches, dividing them based on 
the individual subjectivity or “five-year plan”. Therefore, 
in order to explore the reasons for the slowdown of 
ICE growth since China's economy entered the "new 
normal", the research period is divided into 2007-2012 
and 2012-2017 in this paper. 

Based on the above analysis, we first reveal the 
spatio-temporal evolution characteristics of China's 
ICE. Then, the Tapio model is used to investigate the 
decoupling relationship between ICE and industrial 
economy at the national and provincial scales. Second, 
the LMDI decomposition method is used to probe 
the influencing factors of ICE change. Third, the 
contribution of each province to the change of China's 
ICE is explored. The results can find out the reasons 
for the slowdown of China’s ICE growth in the “new 
normal”, and also provide a theoretical basis for China’s 
industrial sector to formulate emissions reduction 
policies according to local conditions.

method [51]. For instance, Wang et al. [52] carried 
out the decoupling and decomposition analysis for 
China's ICE from 1994 to 2013 by employing the 
Tapio decoupling model and the LMDI method. The 
results indicated that "weak decoupling" and "expansive 
decoupling" were the main decoupling states at this 
stage. Per capita wealth was the decisive driving force 
of ICE, and energy intensity was the main determinant 
of ICE reduction. Ren et al. [53] calculated the trend of 
decoupling effects in China’s manufacturing industry 
from 1996 to 2010. The decoupling results figured out 
that China's manufacturing industry has gone through 
four decoupling stages: strong negative decoupling 
stage (1996-1999), weak decoupling stage (2000-2001), 
expansive negative decoupling stage (2002-2004), 
and weak decoupling stage (2005-2010). Lu et al. [54] 
investigated the decoupling of CO2 emissions in multiple 
sectors in Jiangsu Province, and found that most of 
important industrial sectors appeared a weak decoupling 
state. Wang et al. [55] analyzed the decoupling situation 
of ICE in Taiwan. The results demonstrated that the 
energy intensity promoted decoupling, and the energy 
structure and industrial structure inhibited decoupling. 
In addition, in order to show a clearer picture of the 
main status of the research on the influencing factors 
of China's ICE, the relevant literature has been listed in 
Table 1.

In a nutshell, a number of studies have explored the 
influencing factors of CO2 emissions at the regional 
level [56-58]. It should be noted that these studies tend 
to make the study area independent in exploring the 
reasons of ICE changes. Thus, their spatial interaction 
effect is often ignored. In the meanwhile, some few 
scholars have noticed this problem. For example, 

Table 1. The relative literature on the analysis of influencing factors in China’s ICE.

Sector Region Method
The main 

promoting factors to 
ICE

The main inhabiting factors to 
ICE Reference

Main heavy and light 
industrial sectors Shanghai LMDI Industrial output Energy intensity, and energy and 

industrial structure [30]

Industrial sector Chongqing LMDI Industrial output Energy structure perform [31]

35 industrial sectors Tianjin LMDI Economies scale Energy utilization efficiency [25]

32 industrial sectors Shanghai LMDI Output scale Industrial structure [48]

35 industrial sectors Tianjin LMDI The scale of production Intensity of energy [46]

32 industrial sectors Nanchang LMDI Economic output Energy intensity [39]

34 sectors Zhuhai LMDI and 
decoupling Economic output Energy intensity [40]

13 major sectors Henan LMDI Economic scale Internal structure, and energy 
intensity [38]

38 sub-sectors Jiangsu LMDI and 
decoupling Industrial output Energy efficiency [43]

20 industrial sectors Taiwan LMDI and 
decoupling

Energy structure and 
industrial structure Energy intensity [44]
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Material and Methods

CO2 Emissions’ Estimation

The energy consumption data in the industrial 
sector of each province is collected from China Energy 
Statistical Yearbook. The data including industrial 
value added, GDP, and population are obtained from the 
China Statistical Yearbook and Statistical Yearbook of 
each province. The study period ranges from 2007 to 
2017. The industrial value added and GDP are deflated 

at the 2007 constant prices by using the corresponding 
price indices. The CO2 emissions’ factor is collected 
from IPCC [62]. China’s ICE is represented by the sum 
of the ICE of 30 provinces.

In this study, the ICE is derived from the final fossil 
energy consumption (directly used) and electricity & 
heat consumption (indirectly used). The electricity and 
heat are transformed by other energy, and it is hard 
to determine the CO2 emissions’ coefficient. Among 
them, the heat transformed by fossil energy is generally 
used in the local area. Therefore, the average heat CO2 

Table 1. Continued.

35 industrial sector Jiangxi LMDI
Output, R&D 
intensity, and 

investment intensity

The R&D efficiency, energy 
intensity, and industrial structure [47]

Four energy sectors Liaoning LMDI Economic growth, and 
investment structure

Energy intensity, and energy 
technology [29]

The secondary 
industry sectors

Yangtze River 
Delta Panel model Gross industrial output 

value

Energy structure, energy intensity, 
and the structure of industrial 

enterprises
[26]

Industrial sector China LMDI Industrial activity Energy intensity [35]

Manufacturing 
industry China LMDI and 

decoupling Economic output Energy intensity [42]

Power industry China LMDI Electricity intensity, 
and economic activity Energy efficiency [36]

19 industrial sectors China
Econometric 
regression 

model

FDI, and trade
 comparative advantage

Trade openness, environmental 
regulation, and technology [24]

36 industrial sectors China LMDI Industrial output Energy intensity and structure [49]

38 industrial sectors China LMDI Emission 
coefficient Energy intensity [34]

energy-intensive 
industries China LMDI Emission

 coefficient Energy intensity [33]

Industrial sector China LMDI and 
decoupling Per capita wealth Energy intensity  [41]

Industrial sector China LMDI Investment intensity R&D intensity, and energy 
intensity [32]

Heavy industry China LMDI and 
Decoupling

 Labor 
productivity Energy intensity [45]

23 industries China Combining 
LMDI, PDA GDP Energy intensity, 

and technological advances [37]

Metal industrial 
sectors China

Combining 
IDA, PDA and 

Decoupling
Investment scale

Potential energy intensity, 
investment efficiency, and pro-
duction technological progress

[28]

Industrial sector China LMDI Industrial activity Energy intensity [27]

Industrial sector China (a provin-
cial level)

Spatial 
econometric 

models

Energy consumption 
structure, and 

ownership structure

energy efficiency, and  scale 
structure [50]

Industrial sector
China (national, 

region and 
provincial level)

LMDI Industrial activity  Energy intensity [6]

Industrial sector
China (national 
and provincial 

level)

LMDI and 
decoupling Economic level Industrial structure, and energy 

intensity This study
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coefficient is a value that the CO2 emissions from fossil 
energy used by heat production divided by the heat 
produced. However, the thermal power generation is 
divided into local thermal power and external thermal 
power. The energy data of external thermal power 
is difficult to collect. Therefore, the CO2 emissions’ 
coefficient of electricity employed the data released by 
China [63]. According to the calculation method of CO2 
emissions in IPCC [51], we compute the ICE by using 
Equation (1):

44
12

h
ii ij j j j i i

j i

CC E NCV CC O EL H
h

κ= ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅∑
                             

(1)

...where: Ci denotes the CO2 emissions from energy uses 
in province i. Eij denotes the final consumption of fuel j 
in mass units in province i. NCVj denotes the net calorific 
value (NCV) of fuel j. CCj denotes the carbon content 
(CC) of fuel j. Oj denotes the carbon oxidation factor of 
fuel j. ELi denotes the final consumption of electricity in 
province i. κ denotes the CO2 emissions’ coefficient of 
electricity. Hi denotes the final consumption of heat in 
province i. hi denotes the heat produced by fossil energy 
in province i. Ci

h denotes the CO2 emissions from fossil 
energy used by heat production in province i, and it is 
expressed in Equation (2):

44
12

h
hj j j j

j
C E NCV CC O= ⋅ ⋅ ⋅ ⋅∑

    (2)

...where: Ehj represents the final consumption of fuel j for 
heat production.

Kernel Density Estimation

Kernel density estimation can analyze the overall 
spatial differences in ICE, and directly express the 
distributional dynamic and evolution trend of ICE 
through the change of function’s curve convergence and 
convergence range. This method has been applied in 
studying uneven distribution of CO2 emissions [47], and 
it can be described as Equation (3):

( ) 1

1 N i

i

x xf x K
Nh h=

− =   
∑

          (3)

...where: N denotes the number of observation. h 
represents the bandwidth. K(∙) represents the kernel 
function. xi denotes the observation value obeying 
independent and identically distributed. This paper 
employed the Gaussian kernel function to study the 
distributional dynamic and evolution trend in ICE and 
ICE intensity in China’s 30 provinces. The function is 
defined as Equation (4):

( )
21 exp

22
xK x

π
 

= − 
                (4)

Therefore, this paper can analyze the evolution of 
ICE distribution in China’s 30 provinces by observing 
distributional position, scalability, and morphological 
changes of kernel density function map.

Decoupling Model

According to the Tapio decoupling model [16], 
this paper can explore the relationship between CO2 
emissions (C) and industrial value added (IVA) in the 
industrial sector. The decoupling elasticity can be 
written as Equation (5):

( ), C CD C IVA
IVA IVA
∆=

∆               (5)

...where: D denotes the decoupling elasticity. C 
denotes the CO2 emissions. ∆C denotes the change of 
CO2 emissions from a base year to a target year. IVA 
denotes the industrial value added. ∆IVA denotes the 
change of IVA from a base year to a target year. Based 
on the studies of Tapio [15] and Vehams [64-65], the 
results yielded eight logical possibilities (Fig. 2): weak 
decoupling (WD), expansive coupling (EC), expansive 
negative decoupling (END), strong negative decoupling 
(SND), weak negative decoupling (WND), recessive 
coupling (RC), recessive decoupling (RD), and strong 
decoupling (SD).

Fig. 2. The decoupling framework between ICE and industrial 
economy.
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Decomposition Model of CO2 Emissions

The LMDI method is preferred because all zeros 
in the data set can be replaced by a small positive 
constant [27]. Ang [23] concluded that the LMDI is the 
preferred method, due to their theoretical foundation, 
adaptability, ease of use, and result interpretation. 
Moreover, Ang [29] gave a practical guide that includes 
the general formulation process and summary tables for 
easy reference and examples. The decomposition of ICE 
is expressed as Equation (6):

j j
j j j

j jj

C E E Q GC C P Coe ES EI IS EL P
E E Q G P

= = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅∑ ∑
 

j j
j j j

j jj

C E E Q GC C P Coe ES EI IS EL P
E E Q G P

= = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅∑ ∑
            (6)

...where: Cj denotes the CO2 emissions of energy j. Ej 
denotes the energy consumption of energy j. E, Q, and 
P denote the total energy consumption, industrial value 
added and population, respectively. Moreover, Coe 
represents the CO2 emissions’ coefficient. ES represents 
the energy structure. EI represents the energy intensity. 
IS represents the industrial structure. EL represents the 
economic level.

According to the LMDI method [23, 66], we 
decomposed the changes of ICE (∆Ctot) through the 
additive decomposition method. The ∆Ctot can be 
written as Equation (7):

0t
tot Coe ES EI IS EL PC C C C C C C C C∆ = ∆ − ∆ = ∆ + ∆ + ∆ + ∆ + ∆ + ∆  

0t
tot Coe ES EI IS EL PC C C C C C C C C∆ = ∆ − ∆ = ∆ + ∆ + ∆ + ∆ + ∆ + ∆                   (7)

...where: CO2 emissions’ coefficient effect (∆CCoe) 
denotes the changes of CO2 emissions every unit of 
energy consumption, and the coefficient of fossil energy 
is unchanged [6] (∆CCoe=0). Energy structure effect 
(∆CES) denotes the changes of share of different energy 
in total energy consumption in China’s industry. Energy 
intensity effect (∆CEI) denotes the changes of ratio of 
industrial energy consumption to industrial value added. 
Industrial structure effect (∆CIS) denotes the changes of 
the share of industrial value added in GDP. Economic 
level effect (∆CEL) denotes the changes of per capita 
GDP. Population effect (∆CP) denotes the changes of 
population.

Accordingly, the effects of each factor can be 
estimated by Equations (8-13):

0

0 0

0
j

t tCoe jj t

CoeC CC In
InC InC Coe

−∆ = ⋅ =
−∑

 (8)

 

0

0 0

j
t tES jj t

ESC CC In
InC InC ES

−∆ = ⋅
−∑

      (9)

0

0 0

t t
EI

t

C C EIC In
InC InC EI

−∆ = ⋅
−∑

     (10)

0

0 0

t t
IS

t

C C ISC In
InC InC IS

−∆ = ⋅
−∑

     (11)

0

0 0

t t
EL

t

C C ELC In
InC InC EL

−∆ = ⋅
−∑

    (12)

0

0 0

t t
P

t

C C PC In
InC InC P

−∆ = ⋅
−∑

      (13)

Results and Discussion

Evolution Characteristics of ICE

As shown in Fig. 3, China’s ICE rose from 5509.43 
Mt in 2007 to 7787.15 Mt in 2012, and slightly 
increased to 8308.78 Mt in 2017. From 2007 to 2012, the 
growth rate of ICE was as high as 41.34%. That may be 
explained by many resource-element-driven industrial 
enterprises in industrial sector and a large amount 
of energy consumption caused by the fast-growing 
industrial economy during this period. However, 
the growth rate of ICE was only 6.7% from 2012 to 
2017. That may be related to “Keep to the new path 
of industrialization with Chinese characteristics” put 
forward at the 18th National Congress of the Communist 
Party of China and "Coordinated progress in advancing 
the new type of industrialization" proposed by the 
central government and the state council in 2015. 
The industrial structures have continued to change 
from resource-element-driven industries to green-
innovation-driven industries [67]. In addition to a slight 
increase in 2017, China's ICE intensity has continuously 
decreased from 4.46 tons/10,000 yuan in 2007 to  
2.90 tons/10,000 yuan in 2016. That may be attributed 
to the upgrading of industrial structures and the 

Fig. 3. The ICE status in China from 2007 to 2017.
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improvements of energy utilization technology in 
China's industrial sectors.

Spatio-temporal Evolution Characteristics 
of ICE at the Provincial Level

Based on the characteristics of rapid growth before 
2012 and weak fluctuations after 2012 in China’s ICE, 
this paper described the spatial distribution of China’s 
ICE in 2007, 2012, and 2017 (Figs 4, 5). As shown in 
Fig. 4, China’s ICE rose on the whole over the study 
period, with an obvious spatial difference. In 2007, the 
ICE in the eastern coastal provinces was significantly 
higher than that in other provinces, among which 
Shandong, Hebei, Jiangsu, Henan, and Guangdong were 
the top 5 industrial CO2 emitters. However, the ICE 
intensity in Guangdong and Jiangsu was significantly 
lower than that in other provinces (Fig. 5). Meanwhile, 
the ICE in the Northwest regions was significantly 
lower than that in other regions, but their ICE intensity 
was significantly higher (Fig. 5). That may be due 
to the characteristic of small-scale and extensive 
development in industrial sector in northwest China. In 
2012, the ICE of most provinces increased to different 
degrees, and the number of the provinces with ICE of 

level 3-5 increased significantly. That may be resulted 
from a large amount of energy consumption caused by 
the continuous industrialization and urbanization in 
different provinces. What calls for special attention is 
that the focus of China’s ICE had a trend to spread to the 
mainland provinces. The ICE level in Shanxi, Hubei, 
and Sichuan shifted from level 2 to level 3, and the 
level in Shaanxi, Gansu, Ningxia, and Xinjiang shifted 
from level 1 to level 2. That may be due to the transfer 
of labor-intensive and resource-intensive industries 
from the eastern regions to the central and western 
regions. In addition, the ICE intensity of each province 
has declined to different degrees from 2007 to 2012  
(Fig. 5). In 2017, the ICE in most provinces increased 
by a small margin, and the ICE in the northern regions 
was generally higher than that in the southern regions. 
However, the ICE intensity in the northwest regions, 
such as Ningxia, Xinjiang, and Qinghai, has increased 
(Fig. 5), and their intensity was significantly higher 
than that in other provinces. The major cause was that 
the industrial production in the northwest regions was 
still highly dependent on energy and resource inputs, 
undertaking some resource-intensive industries from 
the central and eastern regions. Therefore, it is vital 
for the northwest regions to ensure the transformation 

Fig. 4. The spatio-temporal evolution characteristics of ICE at the provincial level. Level 1-5 represent different ranges of ICE, which in 
turn are 0-100 Mt, 100-300 Mt, 300-500 Mt, 500-700 Mt, and >700 Mt, respectively.
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of industrial production to environmentally friendly, 
low-carbon, energy-saving, and high-tech processing 
type, so as to achieve the dual goals of industrial 
economic growth and low-carbon emissions [68]. 
Coastal provinces such as Shandong, Guangdong and 
Jiangsu were still the major industrial CO2 emitters, 
and their ICE intensity was still at a relatively low level, 
suggesting that their industrial economic volume and 
quality improved synchronously.

Evolution trend of ICE Distribution based on 
Kernel Density

To further clarify the evolution characteristics of 
ICE among 30 provinces, this paper applied R (Gaussian 
kernel density function) to plot a graph of evolution 
trend of ICE and ICE intensity among 30 provinces in 
2007, 2012, and 2017. The results are shown in Fig. 6.

Specifically, the crest of ICE has moved to the right 
and the slope had a slowing trend during 2007-2012, 
namely, the ICE in 30 provinces have significantly 
increased as a whole. In addition, the variation range of 
the curve has increased, implying that the gap of ICE 
has become larger among 30 provinces. That may be 
explained by the growing gap of the industrial economy 

volume in different provinces. Compared with 2012, the 
curve in 2017 moved slightly to the right, meaning that 
the ICE in most provinces increased slightly during this 
period. Fig. 6 also showed the evolution trend of ICE 
intensity. On the contrary, the crest of ICE intensity 
has moved to the left and had a steep slope during 
2007-2012, illustrating that the intensity has declined 
overall and clustered at lower values. That may be 
resulted from the upgrading of industrial structures 
and the improvement of energy utilization technology 
in China. In the meantime, the range of the curve has 
narrowed significantly, suggesting that the difference of 
ICE intensity has further reduced among 30 provinces. 
In 2017, the crest of the curve moved further to the 
left, showing that ICE intensity of different provinces 
has further decreased and concentrated at the lower 
values. However, the crest of the curve has widened 
in 2017, demonstrating that the ICE intensity among 
30 provinces was more polarized. It is noticeable 
that the density of ICE intensity within the range of  
10-20 tons/10,000 yuan increased. That was the result 
of the continuous deterioration of ICE in northwest 
China. Thus, more policies should be made and  
more measures should be taken to reduce their ICE 
intensity.

Fig. 5. The spatio-temporal evolution characteristics of ICE intensity at the provincial level. Level 1-5 represent different ranges 
of ICE intensity, which in turn are 0-3 tons/10,000 yuan, 3-6 tons/10,000 yuan, 6-9 tons/10,000 yuan, 9-12 tons/10,000 yuan, and  
>12 tons/10,000 yuan, respectively.
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The Results of the Decoupling Analysis

the Decoupling Analysis at the National Level

As shown in Fig. 7, from 2007 to 2012, the 
decoupling elasticity between ICE and industrial 
economy was relatively high up to 0.53. Moreover, 
the decoupling state was WD with the elasticity 
between 0.4 and 0.8 each year. During this period, 
the Chinese government promoted the rapid increase 
of industrial investment. At the same time, the rapid 
growth of industrial economy was accompanied by 
the inefficiency of energy use and relatively high 
decoupling elasticity, producing the rapid growth of 
ICE. From 2012 to 2017, the decoupling elasticity was 
relatively low, reaching 0.29. Three decoupling states, 
WD, SD (2014-2015), and SND (2016-2017), were found 
in this period. Moreover, the elasticity showed an “M” 
curve trend in different years, that is, an unstable but 
good decoupling state as a whole, which was conductive 
to a significant decline of the growth rate in China's 
ICE. That may be related to “Keep to the new path of 

industrialization with Chinese characteristics” proposed 
by China and the transformation of industrial type from 
resource-driven industries to green innovation-driven 
industries. However, the SND state appeared in 2016-
2017, in other words, the industrial economy declines 
while ICE increases. Therefore, China's industrial sector 
should continue to adjust the industrial structure and 
improve energy efficiency, comprehensively strengthen 
scientific and technological innovation, and promote the 
decoupling between ICE and industrial economy.

Decoupling Analysis at the Provincial Level

The Fig. 8 shows four decoupling states occurred 
among 30 provinces during 2007-2012, namely, SD, 
WD, EC, and END. The relationship between ICE 
and industrial economy presented a WD state in most 
provinces. That is to say, the growth rate of ICE was 
lower than that of the industrial economy. The EC state 
was found in Gansu, with a decoupling elasticity of 
0.83, which indicates that ICE and industrial economy 
increased almost simultaneously. Xinjiang displayed 
an END state with the decoupling elasticity of 2.48. 
Although the WD state was found in other provinces, 
their decoupling elasticity was still large, especially in 
the central and western regions. During this period, the 
industrial scale in most provinces was at the stage of 
rapid expansion, and the share of advanced industries 
such as high-tech, green and innovative industries 
was small, resulting in a large decoupling elasticity in 
China’s industrial sector as a whole (Fig. 7). In contrast, 
Beijing, Shanghai, and Jiangxi were the only three 
provinces displaying an SD state. In other words, their 
ICE decreases with the growth of industrial economy. 
However, the three provinces only accounted for 3.35% 
of China's total ICE in 2012 (Fig. 1), which indirectly 
indicates that their industrial scale was not large enough 
to change the overall undesirable decoupling status in 
China. 

Fig. 6. The evolution trend of ICE and ICE intensity among 30 provinces.

Fig. 7. The decoupling elasticity between ICE and industrial 
economy at the national level.
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From 2012 to 2017, the decoupling situation of 
China’s ICE changed greatly in space. Compared 
with the previous period, the decoupling state in the 
northern regions was significantly worse in this period. 
Nevertheless, the state was more ideal in the central 
and southwest regions. Five decoupling states were 
found among 30 provinces, namely, SD, WD, END, 
WND, and SND. Specifically, there were 10 provinces 
presenting an SD state, and they are Beijing, Tianjin, 
Jilin, Shanghai, Henan, Hubei, Hunan, Chongqing, 
Sichuan, and Guizhou. Compared with the previous 
period, the number of provinces with an SD state 
increased significantly in this period. Meanwhile, it is 
noteworthy that these provinces were mainly located 
in the Beijing-Tianjin, central and southwest China. 
The number of provinces displaying a WD state was 
significantly fewer than that in the previous period, 
and they were mainly concentrated in eastern China. 
Among them, the decoupling elasticity of the major 
industrial CO2 emitter such as Shandong, Hebei, 
Guangdong, Jiangsu, and Zhejiang has significantly 
declined. These provinces and some provinces with an 
SD state accounted for a large share of the national ICE  
(Fig. 1), making an important contribution to the 
reduction of national decoupling elasticity to 0.29  
(Fig. 7). The END state was found in Guangxi, Hainan, 
Jiangxi, Ningxia, and Xinjiang. Heilongjiang was the 
only province in WND state. That is to say, both ICE and 
industrial economy were in decline, and the decline rate 
of the former was less. SND state, the worst decoupling 
relation, occurred in Inner Mongolia, Liaoning, Gansu, 
and Qinghai, namely, ICE increased with the decrease 
of industrial value added. It is worth noting that 
END, WND, or SND state was mainly found in the 
northern regions, and their industrial economy was a 
mainly resource-oriented type. Although ICE in these 
provinces accounted for a low share of the national ICE 
(Fig. 1), they still produced a certain inhibiting effect on 
the further reduction of national decoupling elasticity. 
Meantime, the industrial economies in these provinces 
depended on energy consumption. Nevertheless, the 

importance of traditional industries in the economy has 
declined, leading to a significant reduction in demand 
for their industrial products. Therefore, it is urgent 
for these provinces to improve the technological level 
and energy utilization efficiency of related industries, 
to shut down high-polluting and energy-consuming 
enterprises whose production equipment does not meet 
the standards, and to develop some high-tech industries 
with low emissions and high value added.

The Results of the Decomposition Analysis

Decomposition Analysis at National Level

As shown in Table 2, China’s ICE increased by 
2277.72 Mt from 2007 to 2012, with the growth rate 
of 41.34%, caused by economic level, population, and 
industrial structure. Among them, economic level was 
the decisive contributor to ICE increase, with an increase 
of 3424.85 Mt. That may be due to the rapid growth of 
China's economy and the 4 trillion yuan investment 
of the central government in response to the financial 
crisis in 2008 to expand domestic demand during 
this period [69]. Meanwhile, the industrial structure 
contributed 57.78 Mt to ICE increase. Population 
always played a positive role in ICE increase, leading to  
214.20 Mt. Energy intensity was the largest curbing 
factor in ICE, and the curbing effect was 1,469.80 Mt. 
That may be attributed to the improvements of energy 
utilization technology and industrial structure in 
China’s industrial sector. Energy structure exhibited a 
marginal inhibiting effect on ICE.

From 2012 to 2017, China’s ICE only increased by 
521.63 Mt, with the growth rate of 6.7%. Economic level 
contributed most to the ICE growth, with an increase of 
2825.77 Mt. The major cause was that China’s economy 
has been growing steadily and the market for industrial 
products has been expanding. Population was a minor 
contributor to ICE growth, resulting in 234.27 Mt. 
Nevertheless, it is noticeable that industrial structure 
was the largest contributor to ICE reduction during 

Fig. 8. The decoupling states between ICE and industrial economy at provincial level.
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the period, with figure of 1430.01 Mt, the primary 
contributor to the decline in the growth rate of China’s 
ICE. That may be due to the “Keep to the new path of 
industrialization with Chinese characteristics” proposed 
by China. Accordingly, the industrial type has been 
transforming from labor-intensive industries and raw 
material heavy chemical industries to capital-intensive, 
technology-intensive manufacturing industries and 
modern service industries to meet the needs of products 
and living. Energy intensity was a minor contributor to 
ICE reduction, leading to 92.82 Mt. However, it brought 
an increase of 540.78 Mt in 2016-2017, indicating 
that more attention should be paid to the upgrading 
of industrial structure within the industry. Energy 
structure exerted a restraining effect on ICE, with an 
emission reduction of 186.58 Mt, showing that China’s 
energy consumption structure has improved in recent 
years.

It is particularly worth mentioning that the 
slowdown of China’s ICE growth was mainly caused 
by industrial structure and energy intensity during  
2012-2017. The decline in the proportion of industrial 
value added in GDP was the reason for the large 
amount of emission reduction caused by the industrial 
structure in this period, which is different from  
ICE reduction mainly caused by energy intensity  
during 2007-2012. More to the point, although the 
reduction in the share of industrial economy in the 
national economy is conducive to ICE reduction, it 
is unhealthy for the steady development of national 
economy to blindly reduce the proportion of industrial 
economy, and to vigorously develop the tertiary 
industry such as finance. Therefore, the next emission 
reduction target in China's industrial economy should 
also be focused upon the development of the green and 
innovative industries with low energy consumption and 
high value added.

Provincial Contribution to China’s ICE Change

As shown in Fig. 9, the decrease or growth of 
ICE caused by driving factors overall was larger in  
2007-2012 than that in 2012-2017 in most provinces. 
With the development of the social economy, 
technology, and industrial structure, the contributions to 
the national ICE and the driving direction of influencing 
factors in ICE in the different provinces have changed 
in 2012-2017. The specific changes are as follows:

From 2007 to 2012, Hebei, Shandong, and Jiangsu 
contributed most to China’s ICE growth, with the 
contributions of 213, 185 and 171 Mt, respectively. 
Meanwhile, their ICE was among the top 3 of all 
provinces. Economic level played the main role in 
their ICE growth. However, the decoupling elasticity of 
the three provinces was relatively high in this period, 
suggesting that the improvement of their economic level 
was relatively extensive. Energy intensity in Hebei and 
Jiangsu was the largest inhibiting factor in ICE, but the 
figure for the ICE reduction was only 74 and 72 Mt, 
respectively, which also indicates that energy intensity 
still has a great potential for their ICE reduction. 
Industrial structure and energy intensity in Shandong 
made the main contributions to ICE reduction. Whereas, 
their contributions to ICE reductions was only 87 and 
72 Mt, respectively, implying that Shandong still needs 
to pay attention to the upgrading of industrial structure 
and the innovative and green development of industry. 
Moreover, Xinjiang, with END state, contributed 111 
Mt to China’s ICE increase. The economic level and 
energy intensity were the crucial promoting factors in 
its ICE growth; meantime, its ICE share in the country 
also increased from 1.75% in 2007 to 2.66% in 2012  
(Fig. 1). That may be due to its vigorous development 
of the traditional resource-intensive industries and a 
high level of the ICE intensity (Fig. 5). Hence, energy 

Table 2. The decomposition results of different factors in ICE change at the national level.

Stage ΔCES ΔCEI ΔCIS ΔCEL ΔCP ΔC

2007-2008 3.35 −274.14 −14.36 597.00 45.27 357.13 

2008-2009 −6.15 −391.02 58.35 617.62 46.03 324.84 

2009-2010 −79.91 −210.55 93.24 752.66 45.75 601.19 

2010-2011 46.76 −227.69 59.07 756.17 35.02 669.34 

2011-2012 −15.45 −366.41 −36.45 701.40 42.13 325.22 

2007-2012 −51.39 −1469.80 159.86 3424.85 214.20 2277.72 

2012-2013 −185.07 −359.27 −134.87 661.22 41.87 23.88 

2013-2014 −22.90 −343.61 −49.69 584.90 42.29 210.99 

2014-2015 −11.49 −505.18 −214.55 549.00 48.58 −133.64 

2015-2016 −17.75 −254.54 −154.25 510.46 51.68 135.59 

2016-2017 50.63 540.78 −876.65 520.20 49.85 284.82 

2012-2017 −186.58 −921.82 −1430.01 2825.77 234.27 521.63 
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utilization technology and industrial transformation 
and upgrading should be improved to reduce its ICE 
intensity and restrain the rapid growth of ICE.

Compared with the previous period, the contributions 
of most provinces to the national ICE growth decreased 
to different degrees during 2012-2017, which led to a 
significant decline in the growth rate of China's ICE 
at this stage. Xinjiang was the largest contributor to 
China’s ICE growth, with figures of 148 Mt, and its ICE 
share in the country has further increased from 2.66% 
in 2012 to 4.28% in 2017. Economic level and energy 
intensity were still the main promoting factors in its 
ICE. In the meanwhile, its decoupling state was END. 
Therefore, it is necessary to facilitate its improvement 
of energy efficiency and technological advancement 
to curb the continuous rapid ICE growth. Jiangxi 
contributed 112 Mt to the growth of national ICE, 
and its ICE share in the country increased from only 
1.06% in 2012 to 2.35% in 2017. Energy structure and 
economic level played the leading roles in ICE increase. 
That may be explained by the relatively extensive 

industrial economy such as ceramics in Jiangxi. Thus, 
specific attention should be paid to the improvement of 
its energy structure and energy utilization efficiency. 
Jiangsu contributed 99 Mt to the national ICE growth, 
and its ICE share in the country increased from 7.41% 
in 2012 to 8.13% in 2017. Economic level was the main 
promoting factor in its ICE growth, and energy intensity 
was the main curbing factor in its ICE. Industrial 
structure contributed only 11 Mt reductions to its ICE. 
Hence, the tertiary industry such as finance can be 
appropriately developed to reduce its ICE growth. Jilin 
and Hubei contributed most to China's ICE reduction, 
with figure of 62 and 50 Mt, respectively. Energy 
intensity was the decisive inhibiting factor in their ICE 
growth. Meanwhile, their ICE reduction from energy 
intensity has been greater than the ICE growth caused 
by the economic level, thereby presenting a good 
decoupling state.

Moreover, comparing the change of ICE increment 
in two phases, there was a larger increment reduction 
in the central and eastern provinces with large-scale 

Fig. 9. The decomposition results of different factors in ICE change at the provincial level (Mt). ∆C1 denotes the ICE change in different 
provinces from 2007 to 2012. ∆C2 denotes the ICE change in different provinces from 2012 to 2017. ∆C2 - ∆C1 denotes the change of ICE 
increment from 2007-2012 to 2012-2017.
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industrial economy (Figs 1, 9), playing the main role in 
the increase of only 521.63 Mt in China’s ICE during 
2012-2017. Hebei and Sichuan were the two provinces 
with the largest reduction in ICE increment, with 
figures of 208 and 182 Mt, respectively. The primary 
driving factor in curbing their ICE has changed from 
energy intensity to industrial structure, and their 
decoupling elasticity was relatively low. That may be 
the result from the transformation and upgrading of 
their industrial structure as well as the improvement 
of energy utilization technology, making a great 
contribution to the substantial decline of the growth 
rate in China’s ICE. Hubei and Shandong followed 
with the reductions of 170 and 156 Mt, respectively. 
Meantime, in the provinces as Liaoning, Jilin, and 
Henan with a large reduction in ICE increment, energy 
intensity and industrial structure played the main roles 
in restraining their ICE growth. Furthermore, although 
the industrial structure effect brought a large amount 
of ICE reductions in the provinces with large-scale 
traditional industries, they should also avoid blindly 
shifting the industry to the development of the tertiary 
industry. Meanwhile, more attention should be given to 
the improvement of energy utilization efficiency and 
the upgrading of industrial structure within industry 
to reduce their energy intensity. Beijing, Shanghai, 
Jiangxi, Hainan, and Xinjiang were the only provinces 
with the growth of ICE increment. Among them, except 
for Xinjiang, other provinces accounted for a small 
share of the national ICE, producing a weak curbing 
effect on the slowdown of China’s ICE growth.

Conclusions

In order to figure out the reasons for the slowdown 
of China’s ICE growth in the “new normal”, we first 
explored the evolution characteristics of ICE. Secondly, 
the Tapio decoupling model was introduced to analyze 
the decoupling relationship between ICE and industrial 
economy. Finally, we further explored the related 
driving factors of ICE change, and the contributions 
of each province to China's ICE in 2007-2012 and  
2012-2017 by using the LMDI method. The main 
conclusions are as follows:

China’s ICE rose from 5509.43 Mt in 2007 to  
7787.15 Mt in 2012, and slightly increased to 8308.78 Mt 
in 2017. The growth rate of ICE was 41.34% from 2007 
to 2012, while it significantly decreased to 6.7% from 
2012 to 2017. On the whole, the spatial difference of 
China's ICE has gradually evolved from high emissions 
in the northern coastal regions and low emissions in 
other regions to high emissions in the northern regions 
and low emissions in the southern regions. Meanwhile, 
the gap of ICE has gradually widened among provinces. 
Moreover, ICE intensity continued to decrease in the 
central and eastern provinces, but remained consistently 
high in the resource-intensive industrial areas such as 
Northwest and Northeast. The gap of ICE intensity 

has decreased among provinces, converging on lower 
values.

From 2007 to 2012, the decoupling elasticity 
between China’s ICE and industrial economy was 
relatively high, reaching 0.53. Most provinces displayed 
a WD state. From 2012 to 2017, the elasticity dropped to 
0.29, which was conducive to the decline of the growth 
rate in China's ICE. Compared with the previous 
stage, the decoupling state in the northern regions was 
significantly worse during this period. Nevertheless, 
the state was more ideal in the central and southwest 
regions. Meanwhile, the SD state mainly appeared in 
central and southwest China, and their ICE accounted 
for a large share of the national ICE, making a 
significant contribution to the decline of China's overall 
decoupling elasticity. It is noteworthy that the northern 
regions mainly experienced the END, WND, or SND 
state, and their ICE accounted for a low share of the 
national ICE (Fig. 1). Thus, they exhibited a certain 
inhibiting effect on the further reduction of national 
overall decoupling elasticity.

China’s ICE increased by 2277.72 Mt from 2007 to 
2012. Economic level was the main contributor to ICE 
growth, and energy intensity was the main determinant 
of ICE reduction. Hebei, Shandong, and Jiangsu 
contributed most to China's ICE increase. From 2012 to 
2017, the ICE only increased by 521.63 Mt. Economic 
level played a decisive role in ICE growth. It should 
be noted that industrial structure was the primary 
curbing factor in China's ICE, while energy intensity 
was the minor inhibiting factor, with an emission 
reduction of 1430.01 Mt and 921.82 Mt, respectively, 
which is the main reason for the slowdown of China's 
ICE growth. Further, the reductions of ICE increment 
in the central and eastern provinces with large-scale 
industrial economies, such as Hebei, Sichuan, Hubei, 
and Shandong, were relatively large. Hence, they made 
the main contribution to the decline in the growth rate 
of China's ICE. Industrial structure and energy intensity 
were the main inhibiting factors in their ICE growth. 

Based on these results, we recommend some 
specific countermeasures and suggestions for China’s 
ICE reduction. 

(1) Improve the energy utilization structure and 
reduce the proportion of high-carbon energy sources 
such as coal. The excessive proportion of coal 
consumption can be replaced by some measures such 
as the conversion from coal to electricity and increasing 
the proportion of natural gas consumption. Meanwhile, 
particular attention should be paid to the Northwest 
regions and the provinces with a weak industrial base, 
such as Jiangxi and Hainan. With abundant sunshine 
and natural resources in the northwest regions and 
rich natural-gas reserves in the southwest regions, 
more efforts should be made to introduce or develop 
advanced techologies, incease the development of clean 
and renewable energy in these regions, and increase the 
proportion of clean energy such as wind, electricity and 
nuclear power [1]. 
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(2) Research and popularize energy utilization 
technology to improve the utilization efficiency. 
Increase investment in the research and development 
of energy utilization technologies.  Priority should 
be given to technological upgrading in the northwest 
regions and some provinces with high ICE intensity, 
such as Shanxi and Liaoning. Meanwhile, they 
should strengthen technological exchanges with the 
developed eastern regions, and introduce and absorb 
advanced high-efficiency technologies, energy-saving 
technologies and renewable energy technologies to 
reduce energy intensity. Moreover, more stringent 
reduction policies should be formulated for  
energy-intensive industries to promote the use of 
energy-saving technologies and equipment, while 
phasing out some high-energy-consuming and high-
polluting enterprises.

(3) Adjust the industrial structure and optimize the 
industrial production. The northeast and central regions 
should accelerate the optimization of their industrial 
structures. While promoting the transformation 
and upgrading of traditional industries, they should 
implement key projects, strengthen technological 
support and accelerate the development of strategic new 
industries and advanced manufacturing. However, the 
eastern provinces can’t blindly de-industrialize. “De-
industrialization” often leads to the loss of industrial 
support and stagnation in economic development. 
Reasonable optimization of industrial policies is 
an important support for industrial low-carbon 
development. When undertaking resource-intensive 
industries in the central and eastern regions, the western 
regions should also obtain advanced energy-saving 
equipment and technologies from the eastern regions. 
Further, some enterprises with high pollution, high 
emission, and low efficiency should be eliminated, and 
the low-carbon and technology-based manufacturing 
should be vigorously developed.

(4) Decompose the goal of ICE reduction into 
different factors and provinces, and establish a 
mechanism of sharing regional responsibility and a 
compensation system for emissions’ reduction. Allocate 
more reduction to the provinces with a larger ICE share 
in the country, such as Shandong, Jiangsu, and Hebei. 
Meanwhile, actively increase the ICE reduction caused 
by the main inhibiting factor in the provinces with a 
larger ICE increment, such as Xinjiang, Jiangxi, and 
Jiangsu. In addition, the underdeveloped areas in the 
central and western regions should be encouraged to 
strengthen cooperation with the developed areas along 
the eastern coast to continue to narrow the gap in CO2 
emissions’ intensity.

Acknowledgements

We are very grateful for the financial support 
provided by the Research Project of Humanities and 
Social Sciences in Jiangxi’s Universities (Grant No. 

GL19225) and Chinese National Science Foundation 
(Grant Nos. 41661102 and 71473113).

Conflict of Interest

The authors declare no conflict of interest. 

References

1. ZHOU X., ZHANG M., ZHOU M.H., ZHOU M. A 
comparative study on decoupling relationship and influence 
factors between China's regional economic development 
and industrial energy-related carbon emissions. Journal of 
Cleaner Production, 142, 783, 2017.

2. LI Y.M., HU H.D. Influential Factor Analysis and 
Projection of Industrial CO2 Emissions in China Based 
on Extreme Learning Machine Improved by Genetic 
Algorithm. Polish Journal of Environmental Studies, 29 
(5), 3715, 2020.

3. ZHANG Y.J., HAO J.F., SONG J. The CO2 emission 
efficiency, reduction potential and spatial clustering 
in China’s industry: Evidence from the regional level. 
Applied Energy, 174, 213, 2016.

4. United Nations Convention and Declaration Search 
System. Available online: http://www.un.org/zh/
documents/view_doc.asp?symbol=FCCC/CP/2015/L.9/
Rev.1 (accessed on 16 May 2020).

5. Enhanced Actions on Climate Change: China's Intended 
Nationally Determined Contributions. Available 
online: http://www.China.org.cn/chinese/2015-07/01/
content_35953590.htm (accessed on 16 May 2020).

6. WANG M., FENG C. Using an extended logarithmic mean 
Divisia index approach to assess the roles of economic 
factors on industrial CO2 emissions of China. Energy 
Economics, 76, 101, 2018.

7. KE J., PRICE L., OHSHITA S., FRIDLEY D., KHANNA 
N.Z., ZHOU N., LEVINE M. China's industrial energy 
consumption trends and impacts of the Top-1000 
Enterprises Energy-Saving Program and the Ten Key 
Energy-Saving Projects. Energy Policy, 50, 562, 2012.

8. GUAN D.B., LIU Z., GENG Y., LINDNER S., HUBACEK 
K. The gigatonne gap in China’s carbon dioxide 
inventories. Nature Climate Change, 2 (9), 672, 2012.

9. ZHOU J.G., GUANG F.T., GAO Y.M. Prediction of CO2 
Emissions Based on the Analysis and Classification of 
Decoupling. Polish Journal of Environmental Studies, 26 
(6), 2851, 2017.

10. SONG Y., SUN J., ZHANG M., SU B. Using the Tapio-Z 
decoupling model to evaluate the decoupling status of 
China’s CO2 emissions at provincial level and its dynamic 
trend. Structural Change and Economic Dynamics, 52, 
120, 2020.

11. ZHANG M., LI H., SU B., YANG X. Using a new two-
dimensional decoupling model to evaluate the decoupling 
state of global energy footprint. Sustainable Cities and 
Society, 63, 102461, 2020.

12. Organization for Economic Co-operation and 
Development. Sustainable Development: Indicators to 
measure decoupling of environmental pressures from 
economic growth. OECD: Paris, France, 2002.

13. ZHANG Z.X. Decoupling China’s Carbon Emissions 
Increase from Economic Growth: An Economic Analysis 



Song X., et al.2752

and Policy Implications. World Development, 28 (4), 739, 
2000.

14. FREITAS L.C.D., KANEKO S. Decomposing the 
decoupling of CO2 emissions and economic growth in 
Brazil. Ecological Economics, 70 (8), 1459, 2011.

15. TAPIO P. Towards a theory of decoupling: degrees of 
decoupling in the EU and the case of road traffic in 
Finland between 1970 and 2001. Transport Policy, 12 (2), 
137, 2005.

16. SONG Y., ZHANG M., SHAN C. Research on the 
decoupling trend and mitigation potential of CO2 emissions 
from China’s transport sector. Energy, 183, 837, 2019.

17. SONG Y., ZHANG M., ZHOU MIN. Study on the 
decoupling relationship between CO2 emissions and 
economic development based on two-dimensional 
decoupling theory: A case between China and the United 
States. Ecological Indicators, 102, 230, 2019.

18. SONG Y., ZHANG M. Using a new decoupling indicator 
(ZM decoupling indicator) to study the relationship 
between the economic growth and energy consumption in 
China. Natural Hazards, 88 (2), 1013, 2017.

19. WANG Q., JIANG R. Is China's economic growth 
decoupled from carbon emissions? Journal of Cleaner 
Production, 225, 1194, 2019.

20. ZHANG M., SONG Y., SU B., SUN X.M. Decomposing 
the decoupling indicator between the economic growth 
and energy consumption in China. Energy Efficiency, 8 
(6), 1231, 2015.

21. ZHOU P., ANG B.W. Decomposition of aggregate CO2 
emissions: A production-theoretical approach. Energy 
Economics, 30 (3), 1054, 2008.

22. CHANG Y.F., LIN S.J. Structural decomposition of 
industrial CO2 emission in Taiwan: an input-output 
approach. Energy Policy, 26 (1), 5, 1998. 

23. ANG B.W. Decomposition analysis for policymaking in 
energy: which is the preferred method? Energy Policy, 32 
(9), 1131, 2004.

24. DONG B., ZHANG M., MU H.L., SU X.M. Study on 
decoupling analysis between energy consumption and 
economic growth in Liaoning Province. Energy Policy, 97, 
414, 2016.

25. ZHANG M., BAI C.Y., ZHOU M. Decomposition analysis 
for assessing the progress in decoupling relationship 
between coal consumption and economic growth  
in China. Resources, Conservation and Recycling, 129, 
454, 2018.

26. WANG Y.F., ZHAO H.Y., LI L.Y., LIU Z., LIANG S. 
Carbon dioxide emission drivers for a typical metropolis 
using Input-output structural decomposition analysis. 
Energy Policy, 58, 312, 2013.

27. ANG B.W., LIU N. Handling zero values in the logarithmic 
mean Divisia index decomposition approach. Energy 
Policy, 35 (1), 238, 2007.

28. HATZIGEORGIOU E., POLATIDIS H., 
HARALAMBOPOULOS D. CO2 emissions in Greece 
for 1990-2002: A decomposition analysis and comparison 
of results using the Arithmetic Mean Divisia Index and 
Logarithmic Mean Divisia Index techniques. Energy, 33 
(3), 492, 2008.

29. ANG B.W. The LMDI approach to decomposition analysis: 
a practical guide. Energy Policy, 33 (7), 867, 2005.

30. JIA J.S., GONG Z.H., GU Z.Y., CHEN C.D., XIE D.M. 
Multi-perspective comparisons and mitigation implications 
of SO2 and NOX discharges from the industrial sector of 
China: a decomposition analysis. Environmental Science 
and Pollution Research, 25, 9600, 2018.

31. WANG W.W., LIU X., ZHANG M., SONG X.F. Using a 
new generalized LMDI (logarithmic mean Divisia index) 
method to analyze China’s energy consumption. Energy, 
67, 617, 2014.

32. WANG W.W., LI M., ZHANG M. Study on the changes 
of the decoupling indicator between energy-related CO 2 
emission and GDP in China. Energy, 128, 11, 2017.

33. ZHANG M., LIU X., WANG W.W., ZHOU M. 
Decomposition analysis of CO2 emissions from electricity 
generation in China. Energy Policy, 52, 159, 2013.

34. JIA J.S., JIAN H.Y., XIE D.M., GU Z.Y., CHEN C.D. 
Multi-Perspectives’ Comparisons and Mitigating 
Implications for the COD and NH3-N Discharges into the 
Wastewater from the Industrial Sector of China. Water, 9 
(3), 201, 2017.

35. REN S.G., YUAN B.L., MA X., CHEN X.H. The impact of 
international trade on China’s industrial carbon emissions 
since its entry into WTO. Energy Policy, 69, 624, 2014.

36. SHAO C.F., GUAN Y., WAN Z., GUO C.X., CHU C.L., JU 
M.T. Performance and decomposition analyses of carbon 
emissions from industrial energy consumption in Tianjin, 
China. Journal of Cleaner Production, 64, 590, 2014.

37. XU X.B., YANG G.S., TAN Y., ZHUANG Q.L., TANG 
X.G., ZHAO K.Y., WANG S.R. Factors influencing 
industrial carbon emissions and strategies for carbon 
mitigation in the Yangtze River Delta of China. Journal of 
Cleaner Production, 142, 3607, 2017.

38. WU R., GENG Y., CUI X.W., GAO Z.Y., LIU Z.Q. 
Reasons for recent stagnancy of carbon emissions in 
China's industrial sectors. Energy, 172, 457, 2019.

39. WANG M., FENG C. Decoupling economic growth from 
carbon dioxide emissions in China's metal industrial 
sectors: A technological and efficiency perspective. 
Science of the Total Environment, 691, 1173, 2019.

40. WEN L., ZHANG Z. Probing the affecting factors and 
decoupling analysis of energy industrial carbon emissions 
in Liaoning, China. Environmental Science and Pollution 
Research, 26 (14), 14616, 2019.

41. ZHAO M., TAN L.R., ZHANG W.G., JI M.H., LIU Y., 
YU L.Z. Decomposing the influencing factors of industrial 
carbon emissions in Shanghai using the LMDI method. 
Energy, 35 (6), 2505, 2010.

42. YANG J., CHEN B. Using LMDI method to analyze 
the change of industrial CO2 emission from energy 
use in Chongqing. Frontiers of Earth Science, 5 (1), 103, 
2010.

43. ZHANG X., ZHAO X.R., JIANG Z.J., SHAO S. How 
to achieve the 2030 CO2 emission-reduction targets for 
China’s industrial sector: Retrospective decomposition and 
prospective trajectories. Global Environmental Change, 
44, 83, 2017.

44. WANG J., ZHAO T., ZHANG X.H. Changes in carbon 
intensity of China’s energy-intensive industries: a 
combined decomposition and attribution analysis. Natural 
Hazards, 88 (3), 1655, 2017.

45. LIU N., MA Z.J., KANG J.D. Changes in carbon intensity 
in China's industrial sector: Decomposition and attribution 
analysis. Energy Policy, 87, 28, 2015.

46. OUYANG X.L., LIN B.Q. An analysis of the driving 
forces of energy-related carbon dioxide emissions in 
China’s industrial sector. Renewable and Sustainable 
Energy Reviews, 45, 838, 2015.

47. YANG L.S., LIN B.Q. Carbon dioxide-emission in 
China’s power industry: Evidence and policy implications. 
Renewable and Sustainable Energy Reviews, 60, 258, 
2016.



Provincial Contributions Analysis of the Slowdown... 2753

48. DONG F., GAO X.Q., LI J., ZHANG Y., LIU Y. Drivers 
of China's Industrial Carbon Emissions: Evidence from 
Joint PDA and LMDI Approaches. International Journal of 
Environmental Research and Public Health, 15 (12), 2712, 
2018.

49. LIU L., WANG S.S., WANG K., ZHANG R.Q., TANG 
X.Y. LMDI decomposition analysis of industry carbon 
emissions in Henan Province, China: comparison between 
different 5-year plans. Natural Hazards, 80 (2), 997, 2015.

50. JIA J.S., GONG Z.H., XIE D.M., CHEN J.H., CHEN 
C.D. Analysis of drivers and policy implications of carbon 
dioxide emissions of industrial energy consumption in 
an underdeveloped city: The case of Nanchang, China. 
Journal of Cleaner Production, 183, 843, 2018.

51. FENG J.C., ZENG X.L., YU Z., BIAN Y., LI W.C., 
WANG Y. Decoupling and driving forces of industrial 
carbon emission in a coastal city of Zhuhai, China. Energy 
Reports, 5, 1589, 2019.

52. WANG Q., LI R.R., JIANG R. Decoupling and 
Decomposition Analysis of Carbon Emissions from 
Industry: A Case Study from China. Sustainability, 8 (10), 
1059, 2016.

53. REN S.G., YIN H.Y., CHEN X.H. Using LMDI to analyze 
the decoupling of carbon dioxide emissions by China's 
manufacturing industry. Environmental Development, 9, 
61, 2014.

54. LU Q.L, YANG H., HUANG X.J., CHUAI X.W., WU C.Y. 
Multi-sectoral decomposition in decoupling industrial 
growth from carbon emissions in the developed Jiangsu 
Province, China. Energy, 82, 414, 2015.

55. WANG Q.W., HANG Y., ZHOU P., WANG Y.Z. 
Decoupling and attribution analysis of industrial carbon 
emissions in Taiwan. Energy, 113, 728, 2016.

56. LIN B.Q., KUI L. Using LMDI to Analyze the Decoupling 
of Carbon Dioxide Emissions from China’s Heavy 
Industry. Sustainability, 9 (7), 1198, 2017.

57. WANG Y., GE X.L., LIU J.L., DING Z.Q. Study and 
analysis of energy consumption and energy-related carbon 
emission of industrial in Tianjin, China. Energy Strategy 
Reviews, 10, 18, 2016.

58. JIA J.S., JIAN H.Y., XIE D.M., GU Z.Y., CHEN C.D. 
Multi-scale decomposition of energy-related industrial 
carbon emission by an extended logarithmic mean Divisia 
index: a case study of Jiangxi, China. Energy Efficiency, 
12 (8), 2161, 2019.

59. SHAO S., YANG L.L., GAN C.H., CAO J.H., GENG Y., 
GUAN D.B. Using an extended LMDI model to explore 
techno-economic drivers of energy-related industrial CO2 
emission changes: A case study for Shanghai (China). 
Renewable and Sustainable Energy Reviews, 55, 516, 
2016.

60. ZHANG Y.J., PENG H.R., SU B. Energy rebound effect in 
China's Industry: An aggregate and disaggregate analysis. 
Energy Economics, 61, 199, 2017.

61. LONG R.Y., SHAO T.X., CHEN H. Spatial econometric 
analysis of China’s province-level industrial carbon 
productivity and its influencing factors. Applied Energy, 
166, 210, 2016.

62. 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories. Available online: https://www.ipcc-nggip.iges.
or.jp/public/2006gl/index.html (accessed on 16 May 2020).

63. FAN J.S., ZHOU L. Spatiotemporal distribution and 
provincial contribution decomposition of carbon emissions 
for the construction industry in China. Resources Science, 
41 (5): 897, 2019 [In Chinese].

64. VEHMAS J., LUUKKANEN J., KAIVO-OJA J. Linking 
analyses and environmental Kuznets curves for aggregated 
material flows in the EU. Journal of Cleaner Production, 
15 (17), 1662, 2007.

65. VEHMAS J., KAIVO-OJA J., LUUKKANEN J. Global 
Trends of Linking Environmental Stress and Economic 
Growth. Finland Futures Research Centre, Turku, pp. 6, 
2003.

66. ANG B.W. LMDI decomposition approach: A guide for 
implementation. Energy Policy, 86, 233, 2015.

67. LIU Y.H., GUO C.X. "China's Experience" in Industrial 
Development During the 40 Years of Reform and Opening 
up. Economy and Management, 32 (3), 1, 2018 [In 
Chinese].

68. GAO X.C., CAO H.Y. Evaluation of Industrial Development 
and Policies in Northwestern China in the Past 70 Years 
from the Perspective of Low-carbon Economy. Journal of 
Lanzhou University, 47 (5), 11, 2019 [In Chinese].

69. WU Y., TAM V.W.Y., SHUAI C.Y., SHEN L.Y., ZHANG 
Y., LIAO S.J. Decoupling China's economic growth from 
carbon emissions: Empirical studies from 30 Chinese 
provinces (2001-2015). Science of the Total Environment, 
656, 576, 2019.


